Skip to main content

Posts

Showing posts from July, 2019

Repetition Estimation

-By Tom F. H. Runia  Cees G. M. Snoek Arnold W. M. Smeulders Paper Link Abstract Visual repetition is ubiquitous in our world. It appears in human activity (sports, cooking), animal behavior (a bee’s waggle dance), natural phenomena (leaves in the wind) and in urban environments (flashing lights). Estimating visual repetition from realistic video is challenging as periodic motion is rarely perfectly static and stationary. To better deal with realistic video, we elevate the static and stationary assumptions often made by existing work. Our spatiotemporal filtering approach, established on the theory of periodic motion, effectively handles a wide variety of appearances and requires no learning. Starting from motion in 3D we derive three periodic motion types by decomposition of the motion field into its fundamental components. In addition, three temporal motion continuities emerge from the field’s temporal dynamics. For...

A Baseline for 3D Multi-Object Tracking

-By Xinshuo Weng, Kris Kitani Carnegie Mellon University Paper link Abstract  3D multi-object tracking (MOT) is an essential component technology for many real-time applications such as autonomous driving or assistive robotics. However, recent works for 3D MOT tend to focus more on developing accurate systems giving less regard to computational cost and system complexity. In contrast, this work proposes a simple yet accurate real-time baseline 3D MOT system. We use an off-the-shelf 3D object detector to obtain oriented 3D bounding boxes from the LiDAR point cloud. Then, a combination of 3D Kalman filter and Hungarian algorithm is used for state estimation and data association. Although our baseline system is a straightforward combination of standard methods, we obtain the state-of-the-art results. To evaluate our baseline system, we propose a new 3D MOT extension to the official KITTI 2D MOT evaluation along with two new metrics. Our proposed baseline method for 3D MOT ...

Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders

-By Jesse Engel,  Cinjon Resnick ,Adam Roberts , Sander Dieleman, Douglas Eck, Karen Simonyan, Mohammad Norouzi Paper link One of the goals of Magenta is to use machine learning to develop new avenues of human expression. And so today we are proud to announce NSynth (Neural Synthesizer), a novel approach to music synthesis designed to aid the creative process. Unlike a traditional synthesizer which generates audio from hand-designed components like oscillators and wavetables, NSynth uses deep neural networks to generate sounds at the level of individual samples. Learning directly from data, NSynth provides artists with intuitive control over timbre and dynamics and the ability to explore new sounds that would be difficult or impossible to produce with a hand-tuned synthesizer. The acoustic qualities of the learned instrument depend on both the model used and the available training data, so we are delighted to release improvements to both: A dataset of ...