Skip to main content

DeepFashion2: A Versatile Benchmark for Fashion Image Understanding


-By Yuying Ge1, Ruimao Zhang
, Lingyun Wu2, Xiaogang Wang
, Xiaoou Tang1, and Ping Luo
The Chinese University of Hong Kong
2SenseTime Research


Even as fashion image analysis gets more traction from today’s image recognition researchers, understanding fashion images remains challenging for real-world applications due to large deformations, occlusions, and discrepancies in clothing across domains and between consumer and commercial images.
DeepFashion is a large-scale clothes database introduced last year by a research team from the Chinese University of Hong Kong (CUHK). The dataset contains over 800k diverse fashion images, each labeled with 50 categories, 1,000 descriptive attributes, bounding boxes and clothing landmarks.
DeepFashion was a solid foundation, but it left a number of areas for improvement. It was limited to a single clothing-item per image, sparse landmarks (4~8 only), and had no per-pixel masks. CUHK researchers recently teamed up with Chinese AI giant SenseTime to develop a greatly improved iteration in DeepFashion2, a large-scale benchmark with comprehensive tasks and annotations of fashion image understanding.
DeepFashion2 contains 491K images of 13 popular clothing categories. A full spectrum of tasks are defined, including clothes detection and recognition, landmark and pose estimation, segmentation, as well as verification and retrieval. All these tasks are supported by rich annotations.
The dataset also includes a total of 801K images of pieces of clothing. Each item is labeled with scale, occlusion, zooming, viewpoint, bounding box, dense landmarks, and per-pixel mask. These items can be categorized as 43.8k clothing identities, where a clothing identity represents a class of apparel with nearly identical cuts, patterns, and designs. Images of the same clothing identities are taken from buyers and sellers, where an item from the buyer and an item from the seller forms a pair.
Researchers say the work makes three main contributions:
  1. Compared with other clothes datasets, DeepFashion2 annotations are at least 3.5× those of DeepFashion, 6.7× of ModaNet, and 8× of FashionAI.
  2. A full spectrum of tasks is carefully defined on the proposed dataset.
  3. Researchers extensively evaluated Mask R-CNN with DeepFashion2. A novel Match R-CNN is also proposed to aggregate all the learned features from clothes categories, poses, and masks to solve clothing image retrieval in an end-to-end manner.
333The research team believes the rich data and labels of DeepFashion2 will accelerate the development of future algorithms to understand fashion images. The paper DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images is on arXiv

Comments

Popular posts from this blog

ABOD and its PyOD python module

Angle based detection By  Hans-Peter Kriegel, Matthias Schubert, Arthur Zimek  Ludwig-Maximilians-Universität München  Oettingenstr. 67, 80538 München, Germany Ref Link PyOD By  Yue Zhao   Zain Nasrullah   Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada  Zheng Li jk  Northeastern University Toronto, Toronto, ON M5X 1E2, Canada I am combining two papers to summarize Anomaly detection. First one is Angle Based Outlier Detection (ABOD) and other one is python module that  uses ABOD along with over 20 other apis (PyOD) . This is third part in the series of Anomaly detection. First article exhibits survey that covered length and breadth of subject, Second article highlighted on data preparation and pre-processing.  Angle Based Outlier Detection. Angles are more stable than distances in high dimensional spaces for example the popularity of cosine-based sim...

Ownership at Large

 Open Problems and Challenges in Ownership Management -By John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Shan He, Ralf Lämmel, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers Facebook Inc.  Software-intensive organizations rely on large numbers of software assets of different types, e.g., source-code files, tables in the data warehouse, and software configurations. Who is the most suitable owner of a given asset changes over time, e.g., due to reorganization and individual function changes. New forms of automation can help suggest more suitable owners for any given asset at a given point in time. By such efforts on ownership health, accountability of ownership is increased. The problem of finding the most suitable owners for an asset is essentially a program comprehension problem: how do we automatically determine who would be best placed to understand, maintain, ev...

Hybrid Approach to Automation, RPA and Machine Learning

- By Wiesław Kopec´, Kinga Skorupska, Piotr Gago, Krzysztof Marasek  Polish-Japanese Academy of Information Technology Paper Link Courtesy DZone   Abstract One of the more prominent trends within Industry 4.0 is the drive to employ Robotic Process Automation (RPA), especially as one of the elements of the Lean approach.     The full implementation of RPA is riddled with challenges relating both to the reality of everyday business operations, from SMEs to SSCs and beyond, and the social effects of the changing job market. To successfully address these points there is a need to develop a solution that would adjust to the existing business operations and at the same time lower the negative social impact of the automation process. To achieve these goals we propose a hybrid, human-centred approach to the development of software robots. This design and  implementation method combines the Living Lab approach with empowerment through part...