Skip to main content

Text2Math model for semantically parsing text into math expressions

-By Yanyan Zou and Wei Lu 
StatNLP 
Research Group Singapore University of Technology and Design



Abstract
We propose Text2Math, a model for semantically parsing text into math expressions. The model can be used to solve different math related problems including arithmetic word problems and equation parsing problems. Unlike previous approaches, we tackle the problem from an endto-end structured prediction perspective where our algorithm aims to predict the complete math expression at once as a tree structure, where minimal manual efforts are involved in the process. Empirical results on benchmark datasets demonstrate the efficacy of our approach.


Designing computer algorithms that can automatically solve math word problems is a challenge for the AI research community. Two representative tasks have been proposed and studied recently – solving arithmetic word problems and equation parsing as illustrated in image The former task focuses on mapping the input paragraph (which may involve multiple sentences) into a target math expression, from which an answer can be calculated. The latter task focuses on mapping a description (usually a single sentence) into a math equation that typically involves one or more unknowns.


Expression Tree

We first define tree representations for math expressions, which will then be regarded as the semantic representations used in the standard semantic parsing setup. 
The nodes involved in the math expression trees can be classified into two categories, namely, operator and quantity nodes. Specifically, operator nodes are the tree nodes that define the types of operations involved in expressions. In this work we consider ADD (addition, +), SUB (subtraction, −), MUL (multiplication, ×) and DIV (division, ÷). We also regard the equation sign (=) as an operation involved in math expressions and use EQU to denote it. We consider two types of quantity nodes: CON denoting constants, and VAR for unknown variables. Table 1 lists the above nodes. 
Each tree node comes with an arity which specifies the number of direct child nodes that should appear below the given node. For example, the operator node SUB with arity 2 is expecting two child nodes below it in the expression tree, while CON with arity 0 is supposed to be a leaf node. The two math expressions in Figure 1 can be equivalently represented by expression trees consisting of such nodes.




Conclusion

In this work, we propose a unified structured prediction approach, Text2Math, to solving both arithmetic word problems and equation parsing tasks. We leverage a novel joint representation to automatically learn the correspondence between words and math expressions which reflects semantic closeness. Different from many existing models, Text2Math is agnostic of the semantics of operands and learns to map from text to math expressions in an end-to-end manner based on a data-driven approach. Experiments demonstrate the efficacy of our model. In the future, we would like to investigate how such an approach can be applied to more complicated math word problems, like algebra word problems where a problem usually maps to an equation set. Another interesting direction is to investigate how to incorporate world knowledge into the graph-based approach to boost the performance

Comments

Popular posts from this blog

ABOD and its PyOD python module

Angle based detection By  Hans-Peter Kriegel, Matthias Schubert, Arthur Zimek  Ludwig-Maximilians-Universität München  Oettingenstr. 67, 80538 München, Germany Ref Link PyOD By  Yue Zhao   Zain Nasrullah   Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada  Zheng Li jk  Northeastern University Toronto, Toronto, ON M5X 1E2, Canada I am combining two papers to summarize Anomaly detection. First one is Angle Based Outlier Detection (ABOD) and other one is python module that  uses ABOD along with over 20 other apis (PyOD) . This is third part in the series of Anomaly detection. First article exhibits survey that covered length and breadth of subject, Second article highlighted on data preparation and pre-processing.  Angle Based Outlier Detection. Angles are more stable than distances in high dimensional spaces for example the popularity of cosine-based sim...

Cybersecurity Threats in Connected and Automated Vehicles based Federated Learning Systems

  Ranwa Al Mallah , Godwin Badu-Marfo , Bilal Farooq image Courtesy: Comparitech Abstract Federated learning (FL) is a machine learning technique that aims at training an algorithm across decentralized entities holding their local data private. Wireless mobile networks allow users to communicate with other fixed or mobile users. The road traffic network represents an infrastructure-based configuration of a wireless mobile network where the Connected and Automated Vehicles (CAV) represent the communicating entities. Applying FL in a wireless mobile network setting gives rise to a new threat in the mobile environment that is very different from the traditional fixed networks. The threat is due to the intrinsic characteristics of the wireless medium and is caused by the characteristics of the vehicular networks such as high node-mobility and rapidly changing topology. Most cyber defense techniques depend on highly reliable and connected networks. This paper explores falsified informat...

MLOps Drivenby Data Quality using ease.ml techniques

 Cedric Renggli, Luka Rimanic, Nezihe Merve Gurel, Bojan Karlas, Wentao Wu, Ce Zhang ETH Zurich Microsoft Research Paper Link ease.ml reference paper link Image courtesy 99designes Developing machine learning models can be seen as a process similar to the one established for traditional software development. A key difference between the two lies in the strong dependency between the quality of a machine learning model and the quality of the data used to train or perform evaluations. In this work, we demonstrate how different aspects of data quality propagate through various stages of machine learning development. By performing joint analysis of the impact of well-known data quality dimensions and the downstream machine learning process, we show that different components of a typical MLOps pipeline can be efficiently designed, providing both a technical and theoretical perspective. Courtesy: google The term “MLOps” is used when this DevOps process is specifically applied to ML. Diffe...